Determinant of the Schrödinger Operator on a Metric Graph
نویسندگان
چکیده
In the paper, we derive a formula for computing the determinant of a Schrödinger operator on a compact metric graph. This formula becomes very explicit in the case of the Laplacian with the Neumann boundary conditions.
منابع مشابه
Existence and uniqueness of the solution for a general system of operator equations in $b-$metric spaces endowed with a graph
The purpose of this paper is to present some coupled fixed point results on a metric space endowed with two $b$-metrics. We shall apply a fixed point theorem for an appropriate operator on the Cartesian product of the given spaces endowed with directed graphs. Data dependence, well-posedness and Ulam-Hyers stability are also studied. The results obtained here will be applied to prove the existe...
متن کاملThe Modulus of Continuity of Wegner Estimates for Random Schrödinger Operators on Metric Graphs
We consider an alloy type potential on an infinite metric graph. We assume a covering condition on the single site potentials. For random Schrödingers operator associated with the alloy type potential restricted to finite volume subgraphs we prove a Wegner estimate which reproduces the modulus of continuity of the single site distribution measure. The Wegner constant is independent of the energy.
متن کاملThe Existence Theorem for Contractive Mappings on $wt$-distance in $b$-metric Spaces Endowed with a Graph and its Application
In this paper, we study the existence and uniqueness of fixed points for mappings with respect to a $wt$-distance in $b$-metric spaces endowed with a graph. Our results are significant, since we replace the condition of continuity of mapping with the condition of orbitally $G$-continuity of mapping and we consider $b$-metric spaces with graph instead of $b$-metric spaces, under which can be gen...
متن کاملFixed points for Chatterjea contractions on a metric space with a graph
In this work, we formulate Chatterjea contractions using graphs in metric spaces endowed with a graph and investigate the existence of fixed points for such mappings under two different hypotheses. We also discuss the uniqueness of the fixed point. The given result is a generalization of Chatterjea's fixed point theorem from metric spaces to metric spaces endowed with a graph.
متن کاملFixed point results in cone metric spaces endowed with a graph
In this paper, we prove the existence of fixed point for Chatterjea type mappings under $c$-distance in cone metric spaces endowed with a graph. The main results extend, generalized and unified some fixed point theorems on $c$-distance in metric and cone metric spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005